Potential risk resulting from the influence of static magnetic field upon living organisms. Numerically simulated effects of the static magnetic field upon model complex lipids

نویسندگان

چکیده

Background : Recognising effects of static magnetic field (SMF) varying flux density on flora and fauna is attempted. For this purpose, the influence studied for molecules five complex lipids i.e. such as β-carotene, sphingosine, ceramide, cholesterol phosphatidylcholine. Methods Computations effect real SMF 0.0, 0.1, 1, 10 100 AMFU (Arbitrary Magnetic Field Unit; here 1AMFU > 1000 T) were performed in silico (computer vacuum), involving advanced computational methods. Results polarises depending applied density. Only β-carotene survives exposure to without radical splitting some valence bonds. Molecules remaining suffered cleavage bonds AMFU. Manipulation with provides either inhibition or stimulation biological functions under study. Conclusions destabilises extent Biological are fairly sensitive SMF, whereas only slight response observed case ceramide cholesterol. Enzymatic hydrolysis phosphatidylcholine stimulated by regardless catalysed enzyme employed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of static magnetic field on the hemodynamic properties of blood flow containing magnetic substances

The use of magnetic fields in targeted drug delivery, especially for treatment of cancers and tumoral regions, is one of the significant techniques in the field of modern methods of treatment. Considering that many vital biological tissues have been located deep in the body, then for targeted drug delivery and effective treatment in these tissues, it is required to bring therapeutic agent to th...

متن کامل

The Inhibitory Effects of Static Magnetic Field on Escherichia coli from two Different Sources at Short Exposure Time

This study was intended to investigate the effectiveness of static magnetic field on the growth of Escherichia coli (E. coli) provided from two sources, the urine samples of patients with urinary tract infections and the reference strain E. coli ATCC 25922. Bacterial samples in Nutrient Broth were subjected to a range of magnetic intensities (2, 4, 6, 9, 14, 16, 18, and 20 mT) at various exposu...

متن کامل

Anticancer Effects of Moderate Static Magnetic Field on Cancer Cells in Vitro

Background: Expansion of the use of magnetic fields in metals, mining, transport, research, and medicine industries has led to a discussion about the effects of magnetic fields and whether their strength is negligible. The aim of this study was to investigate the effects of magnetic field on the viability and proliferation rate of HeLa cells. Materials and methods: We studied the effects of ma...

متن کامل

Effect of a static magnetic field on bone healing in the dog: radiographic and histopathological studies

Although the promotional effects on bone healing of pulsed electromagnetic fields (PEMF) have beenwell demonstrated, the effects of static magnetic fields (SMF) remained unclear. In this study, effects of acustom-made magnetic wrap on radiographic and histopathological aspects of bone healing using a canineunstable osteotomy gap model were investigated. After an osteotomy of the midshaft radius...

متن کامل

Nonlocal elasticity theory for static torsion of the bi-directional functionally graded microtube under magnetic field

The microtubes are important structures in nano electromechanical system .in this study a nonlocal model is presented to investigate the static torsion behavior of microtubes made of bi-directional factionally graded material (BDFGM) subjected to a longitudinal magnetic field. Mechanical properties of BDFGM microtube varies in the radial and longitudinal direction according to an arbitrary func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BioRisk

سال: 2023

ISSN: ['1313-2644', '1313-2652']

DOI: https://doi.org/10.3897/biorisk.21.101171